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Abstract
The motion of a single protein, a λ-receptor in the outer membrane of E. coli,
is studied with optical tweezers. We present improved measurements and
an analysis that accounts for stochastic errors, filters in the detection system,
aliasing and hydrodynamic effects. We test a simple model for the protein’s
motion and find it in agreement with the low-frequency part of the data. We thus
determine physical parameter values for the system with improved precision.
The diffusion coefficient describing the motion of theλ-receptor is now obtained
with 2% relative error for individual receptors, and varies between bacteria
with roughly 70% root-mean-square deviation about the mean. This improved
analysis also reveals that the simple model must be revised in order to agree
with the high-frequency part of the power spectrum.

1. Introduction

Optical tweezers are favourite tools in the rapidly expanding field of single-molecule
biophysics [1]. Recent examples of their use are studies of the motion of motor proteins
such as kinesin, RNA polymerase and myosin [2–4], and of how DNA is wrapped around
nucleosomes [5]. Optical tweezers are essentially non-invasive tools when the laser’s
wavelength is properly chosen [6]. The current resolution of reversible determination of
position is as low as 3 nm [7] and forces as small as tens of femtonewtons have been
measured [8]. Also, optical tweezers have been used successfully to study the motion of single
proteins in membranes of living organisms, both in the eucaryotic double lipid membrane [9–
13] and in the stiffer procaryotic membrane [14]. In all single-molecule investigations,
precision is an issue of major concern. It is not uncommon that the first report on single-
molecule measurements in a given system presents physical parameter values with large
3 Author to whom any correspondence should be addressed.
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Figure 1. DIC microscopy photo showing two E. coli bacteria, one of them having an in vivo
biotinylated λ-receptor in the outer membrane to which a streptavidin coated bead is attached. The
diameter of the bead is 0.56 µm. A movie showing the real time motion of the receptor is also
available [22].

uncertainties, sometimes larger than the values themselves [11, 12]. Precise determination
of the force exerted by optical tweezers is therefore important. The maximum force that
optical tweezers can exert on a dielectric bead can be measured using a flow cell [15]. The
Brownian motion of a bead in a trap can be used for more precise characterizations of the
trap [16–19]. For very precise measurements, however, several factors need to be accounted
for [20]. These include finite sampling rate, frequency-dependent corrections to Stokes’s and
Faxén’s hydrodynamic friction laws, the effects of electronic filters and a frequency-dependent
power loss in the photo-diode detection system [20, 21].

The observation of the motion of a single λ-receptor in the outer membrane of E. coli was
first reported in [14] using the techniques of optical tweezers and single-particle tracking based
on CCD camera recordings. The λ-receptor is responsible for the transportation of maltose
dextrins across the bacterial membrane. In general, receptors and porins in the bacterial
membrane play an important role for transport of nutrients and drugs through the membrane.

In the experiments, a bacterium is fixed on a glass substrate and enclosed in a perfusion
chamber. A streptavidin-coated polystyrene bead with a diameter of 0.56 µm is attached to a
biotinylated λ-receptor, and this bead is used as a handle for the optical tweezers measurements,
as illustrated in figure 1.

The construction of the in vivo biotinylated protein, as well as the description, preparation
and controls of the bacterial system, are described in detail in [14]. Based on a simple model,
physical parameters of the system were extracted: within a domain of radius ∼ 25 nm, the
receptor was found to diffuse with a diffusion coefficient of (1.5±1.0)×10−9 cm2 s−1, and the
receptor was found to be confined in a harmonic potential, as if it were tethered to the bacterial
cell wall by an elastic spring with spring constant of (1.0 ± 0.4) × 10−2 pN nm−1. The λ-
receptor only moves when the bacterium has a well functioning metabolism. An example of
this motion can be seen in the supplementary movie [22]. Thus, it remains unclear whether its
diffusional motion is driven by thermal noise, or by a ‘noise’ caused by its life processes.

Here we present the results of a more careful data acquisition and analysis for the same
biological system, using optical tweezers to track beads attached to the λ-receptor. Experiments
were improved by acquiring longer time-series after a more careful alignment procedure. The
analysis is improved by properly accounting for error bars in the power spectrum of these
time-series, using analytical formulae from [20]. As a result we obtain more precise values
for the physical quantities describing the system.
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2. Experimental measurements

We use an optical tweezers set-up based on a NdYVO4 laser with a quadrant photo-diode back
focal plane detection scheme, as described in [23]. The raw data consist of time-series of
voltages, Vx , Vy and Vz , created across the quadrants by light impinging on them. The voltage
Vz is the sum of the voltages in all four quadrants. The other two voltages are differences: Vx

is the difference between the voltages in the two quadrants to the right and the two quadrants to
the left. Similarly, Vy is the difference between the top two and bottom two quadrants. From
these signals we determine the position of the trapped bead, as described below. Fairly long
time-series were acquired, with 218 data points with sampling frequencies fsample in the range
16–30 kHz, corresponding to time-series of 8.7–16.4 s duration.

In order to align the photo-diode with the laser beam, and to minimize cross-talk between
the channels of the diode, a bead is trapped. The photo-diode is aligned with the laser beam
by minimizing 〈Vx〉 and 〈Vy〉, both of which are calculated on-line using LabView routines.
Cross-talk between the x- and y-channels of the diode is minimized by rotating the aligned
diode to minimize the value of the function Pxy( f )/

√
Px( f )Py( f ) which is also calculated and

plotted on-line [20]. Here, Pxy( f ) ≡ Re(Ṽx( f )Ṽ ∗
y ( f )), and Px and Py are the power spectra

Pi ( f ) ≡ |Ṽi( f )|2, i = x, y, where Ṽi( f ) denotes the Fourier transformation of Vi(t). For
uncorrelated channels the function Pxy( f ) vanishes. If the subsequent, more precise off-line
data analysis yields a non-vanishing function Pxy( f )/

√
Px( f )Py( f ), a simple transformation

leads to uncorrelated coordinates x ′ and y ′ [20].
After this alignment procedure, the trapped bead is positioned at a location just above a

bacterium. Time-series of its motion are taken in order to calibrate the trap, as described in
section 3.1. The coordinates x and y of the bead, be it attached or unattached to a bacterium,
are well approximated by Vx/Vz and Vy/Vz , assuming uncorrelated channels [24, 25]. Only
motion in the (x, y)-plane, i.e., perpendicular to the laser beam, is analysed here.

After data have been taken for an unattached bead, this bead is allowed to escape from the
trap. The sample is then moved such that a bead attached to a λ-receptor is trapped instead.
By moving the sample carefully by means of a piezo-electric stage with spatial resolution
of 1–2 nm, this attached bead is aligned with the laser beam and photo-detection system by
minimizing 〈Vx 〉 and 〈Vy〉 and by maximizing the amplitudes of Vx and Vy . The measurements
reported below were performed with this alignment. With the long time-series needed for the
data analysis presented here, drift of the sample during a measurement is a serious problem in
the data for the bead attached to a λ-receptor. For this reason, low-frequency data are excluded
from the power spectrum analysis below.

3. Theoretical models

3.1. Calibration

If a bead moving freely in solution is held in the optical trap, its movement in each spatial
dimension can be modelled with a one-dimensional Langevin equation:

Mbead ẍ = −κx − γbead ẋ + F(t; T ), (1)

where x(t) is the bead’s x-coordinate at time t , Mbead its mass, γbead its friction with the
surrounding liquid, κ the stiffness of the optical trap and F(t; T ) the random thermal force
from the bead’s surroundings resulting from the thermal motion of the liquid molecules at
temperature T . The Einstein–Ornstein–Uhlenbeck theory of Brownian motion assumes this
thermal force is a white noise. For the sampling rates used here, inertial forces can be neglected
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and the left-hand side of equation (1) set to zero. The motion of the bead in the liquid is treated
as simple Stokes flow, with friction coefficient γbead = 6πηR, for a bead of radius R moving
in a liquid with dynamic viscosity η. Assuming the motion described by (1) is recorded
continuously for a long time Tmeas, we introduce its Fourier transform

x̃k =
∫ Tmeas/2

−Tmeas/2
dt ei2π fk t x(t), fk ≡ k/Tmeas, k integer. (2)

The power spectrum of the position can thus be calculated as P( fk) ≡ 〈|x̃k |2〉/Tmeas yielding
a Lorentzian [18]

P( fk) = kBT

2γbeadπ2( f 2
k + f 2

c )
(3)

with corner frequency fc = κ/(2πγbead). As discussed in [20], experimental power spectra
would be such Lorentzians if measurements were made during infinite time and with infinitely
large sampling frequency. Leakage, the effect of a finite measurement time Tmeas, is negligible
for a smooth spectrum like a Lorentzian, while aliasing, the effect of finite sampling frequency,
is easily taken into account [20], as done in section 4.3. Thus, with some adjustments, we use
the Lorentzian (3) to fit our data.

The raw data provide time-series of the positions x(t), y(t) in arbitrary units. As the
trapping potential is harmonic, the distributions of positions are Gaussian, characterized
by a standard deviation σ in each direction that is related to the trap stiffness κ through
σ 2 = kB T

κ
. In order to find a conversion factor from the arbitrary units to the SI unit of

length, we extract the standard deviation σ in two different manners, one in units of metres,
σSI, and one in arbitrary units, σA: the value of the Lorentzian at zero frequency f is
P0 ≡ kBT/(2γbeadπ

2 f 2
c ) = σ 2

A/(π fc). Thus with fc and P0 determined from the fit, σA

can be found. To determine σSI, we note that the radius of the bead, and thus also γbead, is
known with only 1% error. From the fitted value of fc we find κ and thereby extract a value
for σSI. The ratio between σSI and σA provides the desired conversion factor. This procedure
is different from the one outlined in [14] where the value of σA was determined from the
position histogram. As the position histogram is broadened by low-frequency noise (drift)
and narrowed by low-pass filters in the data acquisition pathway, the method presented here
provides more precise values because these causes of systematic errors can be detected and
circumvented. We used this calibration procedure with all samples and laser intensities.

3.2. Bead attached to protein

We monitor the position of the bead in time, but really want to study the protein it is attached
to. In order to extract the dynamics of the protein’s position in the outer membrane from the
measured positions of the bead, a model introduced in [14] is used. It is assumed that the noise
driving the motion of the protein is thermal, an issue subject to further investigations. The
attachment between the streptavidin coated bead and the biotinylated λ-receptor is modelled
as harmonic, with κbs denoting the spring constant of the biotin–streptavidin binding. The
protein is assumed to be harmonically attached to something inside the cell, putatively the
bacterial cell wall. This assumption is supported by experimental evidence [14] and we denote
the spring constant of this harmonic tether κcw. The last new parameter in the model is γprot,
the friction coefficient describing the frictional force from the bacterial outer membrane on the
moving protein.
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With the reasonable assumption (see arguments in [14]) that κbs � κ, κcw and in the
relevant frequency range ( f � κbs

2πγprot
	 107 Hz) the power spectrum reduces to

Pbead( f ) 	 kBT

2π2(γprot + γbead)( f 2 + fc,λ
2)

(4)

with corner frequency

fc,λ = κ + κcw

2π(γprot + γbead)
. (5)

Hence, the protein–bead complex has a power spectrum as if it were a single object moving in
a liquid with a friction coefficient γprot + γbead, held in a harmonic potential of spring constant
κcw + κ , and with a corner frequency equal to fc,λ.

The power spectrum of the position of the attached bead, (4), contains two unknowns,
κcw and γprot, which both are determined from the fitted parameters P0,λ and fc,λ. A diffusion
coefficient for the protein, Dprot , is extracted via the Einstein relation, Dprot = kB T/γprot.

There is no experimental evidence for anisotropy in the physical parameters with respect
to any bacterial coordinate system. Therefore, the values κcw, γprot and diffusion coefficient
Dprot are defined and calculated independently of choice of coordinate system, as discussed
in [14].

4. Data analysis

4.1. Blocking

In the following power spectral analysis, it is important that the experimentally obtained
power spectral values P(ex)( f ) are uncorrelated for different values of f . To this end, the
entire time-series is fast Fourier transformed without using data windowing [26]. Instead, the
number of data points and their noise are reduced by blocking: a ‘block’ of n consecutive data
points, ( f, P(ex)( f )), of the experimental power spectrum P(ex)( f ) is replaced with one point
( f̄ , P̄(ex)( f̄ )), where

f̄ = 1

nblock

∑
f ∈block

f ; P̄(ex) = 1

nblock

∑
f ∈block

P(ex)( f ). (6)

As shown in [20], the data points of the raw experimental power spectrum are exponentially
distributed. But with sufficiently large nblock, the central limit theorem ensures that the
blocked data points are Gaussian distributed,and standard least-squares fitting of the theoretical
spectrum P to the blocked data points can be done. The theoretical spectrum represents the
expectation value for experimental power spectral values. The scatter of the latter about their
mean is known as well,

〈P̄(ex)( f̄ )〉 = P( f̄ ) (7)

σ(P̄(ex)( f̄ )) = σ(P(ex)( f̄ ))/
√

nblock = P( f̄ )/
√

nblock. (8)

Blocking can be done either on a logarithmic or linear frequency axis. As long as the theoretical
power spectrum is well approximated by a straight line within each block, either method is
equally good. Blocking on a linear axis is more easily implemented in a program, while
blocking on a logarithmic axis is more suitable for graphical presentation in a double-log plot
of the spectrum.
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4.2. Simple Lorentzian fit

Equations (3) and (4) suggest fitting the data by simple Lorentzians if sampling is done with
an infinite sampling rate. When sampling rates and times are not infinite, the Lorentzian form
can still be a reasonable model for the power spectrum at frequencies small compared to the
Nyquist frequency and small compared to the diode’s unintended filter frequency [20]. For
our set-up this restricts our frequency range to f < fmax ∼ 1–2 kHz. The result of a least-
squares fit of the Lorentzian is known analytically. It is given as closed formulae for the fitting
parameters fc and P0 (or fc,λ and P0,λ) as functions of the experimental spectrum [20],

fc =
(

S0,1 S2,2 − S1,1 S1,2

S1,1 S0,2 − S0,1 S1,2

) 1
2

(9)

P0 f 2
c Tmeas = S0,2 S2,2 − S2

1,2

S1,1 S0,2 − S0,1 S1,2
(10)

where Sp,q are sums over experimental data,

Sp,q ≡
N ′∑

k=1

f 2p
k P̄(ex)q

k (11)

and fk are the discrete frequencies at which the experimental power spectral values are given.
The maximum index N ′ corresponds to fmax: fN ′ = fmax, and it is assumed that fN ′ is
somewhat larger than fc. Analytical formulae for the standard deviations of fc and P0, as well
as for the covariance between these fitting parameters, are also known [20].

4.3. Filtered and aliased power spectrum

In order to improve precision, it is desirable to use all available data and fit up to fmax = fNyq ≡
fsample/2. In order to do this, we need to take several factors into account [20]: hydrodynamic
corrections, the effect of aliasing due to the finite sampling frequency, the effect of electronic
filters and the unintended filtering done by the photo-detection system [21]. To our knowledge,
no existing theory describes hydrodynamic corrections to Stokes’s and Faxén’s laws in a manner
useful for the system studied here. The reason for this is that the hydrodynamic environment is
very complex as the beads are close to the rough bacterial surface and the bacteria themselves
are attached to the cover-slip such that the distance between the centre of the bead and the
cover-slip is approximately 1–2 µm. As a first approximation, we anticipate that the effects
of frequency-dependent hydrodynamic corrections are small. This is demonstrated to hold far
from surfaces by the dashed curve in [20, figure 5] for the small bead-size we use here. Also,
as the motion of the protein–bead complex is dominated by the motion of the protein, minor
corrections to the motion of the bead would have little influence on the motion of the protein.

It is, however, important to include the effect of electronic filters and, in particular, the
filtering effect of the photo-detection system [20, 21]. They are all first-order filters, each
with its own roll-off frequency, f3dB. Also, we include the effect of aliasing caused by finite
sampling frequency. Altogether this results in the following expression, to be fitted to the
experimental data:

PF&A( f ) =
n=∞∑

n=−∞
PLorentz( f + 2n fNyq)Felec( f + 2n fNyq)Fdiode( f + 2n fNyq) (12)

where PLorentz( f ) is the Lorentzian power spectrum. In the case of an unattached bead in a
trap, PLorentz( f ) is given by (3). In the case of a bead attached to a protein PLorentz( f ) is given
by (4). In both cases, PLorentz( f ) contains two parameters which are determined by fitting.
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The effects of the filters are described by their characteristics, Felec( f ) and Fdiode( f ) for the
electronic and the diode filters, respectively. They are given by

Felec( f ) =
∏

j

1

1 + ( f/ f ( j)
3dB)2

(13)

and

Fdiode( f ) = 1

1 + ( f/ f (diode)
3dB )2

(14)

where the product over j is over all electronic filters in the acquisition pathway. Equation (14)
is valid for the data used here for which fNyq � f (diode)

3dB . The values of f ( j)
3dB for our electronic

filters are known: one is fixed at 80 kHz, the other is set to either 20 or 50 kHz. As f (diode)
3dB

depends on the laser intensity, it enters as a third fitting parameter [20, 21] in the fits to the
power spectrum of the unattached bead. In practice, the sum in (12) is performed for n in the
range n ∈ [−100, 100].

5. Results

Figure 2 shows the power spectrum of the position of a bead in solution, trapped by the optical
tweezers (squares), and of a bead attached to a protein in the bacterial outer membrane, and
also held with the optical tweezers (circles). The data have been blocked on the logarithmic
frequency axis in order to allow the eye to distinguish individual data points. Each data point
carries error bars of one standard deviation. These error bars decrease exponentially with
frequency and are invisible at higher frequencies.

Figure 2 also shows fits of Lorentzians and the filtered and aliased theoretical power
spectrum to the data: the full lines are Lorentzian fits, obtained using (9) and (10) with data
between fmin = 80 Hz and fmax = 1 kHz. This value for fmin was chosen to avoid effects of
low-frequency noise, caused mainly by mechanical drift. As discussed in [20], precision on
both P0 and fc is possible even with fmin close to fc since the entire frequency range carries
information about both of these fitting parameters. A change in P0, e.g., corresponds to a
translation of the entire power spectrum along the y-axis, so only high-frequency data are
needed to determine P0.

The supports, or goodnesses of fit [26, 27] of the two Lorentzian fits are 35% for the fit
to the power spectrum of the attached bead, and 25% for the unattached one. For the bead
attached to a λ-receptor, the values obtained for the fitting parameters are fc,λ = 90 ± 4 Hz
and P0,λ = 68 ± 4 (arb. units)2 s−1. For the unattached bead, the values are fc = 93 ± 3 Hz
and P0 = (5.3 ± 0.3) × 102 (arb. units)2 s−1.

The results of fitting the filtered and aliased theoretical power spectrum, (12), to data
between fmin = 80 Hz and fmax = fNyq are shown as dashed curves. For the unattached bead,
the goodness of the fit is 19% [26, 27]. In this fit the fitting parameters are fc = 91 ± 3 Hz
and P0 = (5.5 ± 0.4) × 102 (arb. units)2 s−1, in agreement with the Lorentzian fit. The
inset shows the quality of this fit to the filtered and aliased theoretical power spectrum; it is
almost perfect, as indicated already by its support. The 3 dB frequency of the diode, f (diode)

3dB ,
was found to be 13.1 ± 0.1 kHz. This is slightly higher than in previous studies with the
same set-up [20, 21], but reasonable as it depends on the laser intensity. Unknown systematic
errors, e.g., of hydrodynamic origin, may affect this value. With the precision of the procedure
used here, however, no acceptable fit of the filtered and aliased theoretical power spectrum to
the data for a bead attached to a λ-receptor could be obtained. The χ2-value per degree of
freedom was larger than ten for all such spectra. In the concluding section, we shall return to
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Figure 2. Power spectra of the positions of two beads in optical traps. Circles: power spectrum
of bead attached to λ-receptor in bacterial outer membrane. Squares: power spectrum of bead in
solution. The full lines are Lorentzian fits to data between 80 and 1 kHz, done using equations (9)–
(10). Dashed lines are fits to data above fmin = 80 Hz, using the filtered and aliased theoretical
power spectrum (12), with exclusion of the data point at 5.5 kHz which is contaminated by electronic
noise. The inset shows residual values, i.e., blocked data, divided by fitted value, for the fit of (12)
to the spectrum for the bead in solution. Horizontal dashed lines represent ±1 standard deviation
for the residues.

this point. In the following, the parameters resulting from the Lorentzian fits in the frequency
range [80, 1000 Hz] are used to describe the physical properties of the λ-receptor system.

We calculated γprot and κcw from the fitted value of fc,λ and P0,λ, the known value for γbead,
and the value for κ obtained in the calibration of the trap with an unattached bead. Figure 3(a)
shows the value of γprot, and figure 3(b) the value of κcw as a function of applied laser intensity.
In the data acquisition, only laser intensities below the opticution threshold determined in [14]
were applied. Different samples are distinguished by different symbols. Results of six
measurements with bacteria from two independent cultures are shown. Only samples that
gave consistent Lorentzian fits, i.e., fits with a goodness of fit larger than 5% [26, 27], were
included. For a comparison with data acquired and analysed in a simpler fashion, the values
for γprot and κcw of [14] for the same system are shown in the two insets of figure 3. Note the
larger range on the intensity axes of the inset.

Figure 3 maybe indicates that the data analysis used here resolves differences in physical
characteristics between different receptors (on different bacteria): two measurements on the
same receptor, but with different trap strengths,give identical values for physical characteristics
within error bars (in two out of three cases), while measurements on different receptors give
significantly different values. In other words, we seem to have reduced the experimental error
bar on our analysis to a level so low that variations in the biological system itself are responsible
for the largest scatter in results.

Under the assumption that we are able to resolve the characteristics of different
receptors, we have three independent measurements of the quantities we are after, each
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Figure 3. Physical parameters characterizing the motion of a single λ-receptor in the bacterial
outer membrane. The parameters were obtained from fits to the low-frequency part of the power
spectrum. The insets show data published in [14]. Independent samples are distinguished by
different symbols. With the improved precision we seem to resolve differences between individual
bacteria. (a) Friction coefficient γprot describing the friction exerted by the bacterial outer membrane
on the diffusing λ-receptor. (b) Spring constant κcw characterizing the harmonic force between
protein and bacterium, possibly a tether attached to the bacterial cell wall.

drawn from the same unknown distribution. Our three measurements for γprot give as
best estimates for the mean and root-mean-square deviation (RMSD) of this distribution
γ̄prot = (6 ± 2) × 10−8 Ns m−1 and σγprot = (4 ± 2) × 10−8 Ns m−1. Consequently, Dprot for
different receptors is distributed with mean D̄prot = (6.5 ± 2.6) × 10−10 cm2 s−1 and RMSD
σDprot = (4.4 ± 2.2) × 10−10 cm2 s−1. The value D̄prot = (15 ± 10) × 10−10 cm2 s−1 reported
in [14] is consistent with this result. The spring constant describing the connection between
protein and bacterial cell wall is distributed with mean κ̄cw = (3 ± 1) × 10−2 pN nm−1 and
RMSD σκcw = (2±1)×10−2 pN nm−1. This value for κ̄cw is somewhat larger than our earlier
result (1.0 ± 0.4) × 10−2 pN nm−1 [14].

6. Conclusion

We have applied the improved data acquisition and analysis for optical tweezers of [20] to the
biophysical single-molecule experiment of [14], describing the motion of a single λ-receptor
in the bacterial outer membrane.

Using data at low frequencies, precise estimates for the physical parameters of the
biological system were obtained. Diffusion coefficients and spring constants for individual
bacteria were determined with a relative uncertainty as low as 2%, so we are maybe able
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to resolve differences between individual receptors/bacteria, though more experiments are
needed before we can conclude this firmly. The precision achieved here is highly relevant for
measurements of changes in the motion of the λ-receptor, e.g., in response to chemical attacks
on the bacterial cell wall.

Furthermore, the power spectrum of the free bead was fitted to perfection in its entire
frequency range with a functional form that includes most of the effects described in [20]:
electronic filters, frequency-dependent response of our photo-detection system and aliasing
due to finite sampling rate. Yet, the same functional form would not fit the attached bead’s
power spectrum. This failure was not due to noise in the data. Thus, we seem to have reached
a level of precision that requires a refined treatment of our model at higher frequencies, an
issue we intend to address in the near future.
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